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Abstract: Laser detection and ranging (LADAR) systems are commonly used to acquire real-time
three-dimensional (3D) images using the time-of-flight of a short laser pulse. A static unitary detector
(STUD)-based LADAR system is a simple method for obtaining real-time high-resolution 3D images.
In this study, a switched 4-to-1 transimpedance combining amplifier (TCA) is implemented as a
receiver front-end readout integrated circuit for the STUD-based LADAR system. The 4-to-1 TCA is
fabricated using a standard 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology,
and it consists of four independent current buffers, a two-stage signal combiner, a balun, and an
output buffer in one single integrated chip. In addition, there is a switch on each input current
path to expand the region of interest with multiple photodetectors. The core of the TCA occupies
an area of 92 µm × 68 µm, and the die size including I/O pads is 1000 µm × 840 µm. The power
consumption of the fabricated chip is 17.8 mW for a supplied voltage of 1.8 V and a transimpedance
gain of 67.5 dBΩ. The simulated bandwidth is 353 MHz in the presence of a 1 pF photodiode parasitic
capacitance for each photosensitive cell.
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1. Introduction

Laser detection and ranging (LADAR) systems are commonly used to acquire real-time
three-dimensional (3D) images using the time-of-flight (TOF) of a short laser pulse. As LADAR
technology has become more diverse, it has been utilized in various applications, such as autonomous
vehicles, robots, remote sensing, reconnaissance, and motion detection, where high 3D resolution
is important [1–10]. For the real-time acquisition of 3D images, a LADAR system must process all
reflected TOF laser signals from every direction for a region-of-interest (ROI) in real time.

There are different methods of implementing LADAR systems. The static unitary detector
(STUD)-based technique [11] has some unique advantages compared with other techniques, such as
the rotational motion-based technique [12] or the focal plane array (FPA)-based technique [13]. Because
the STUD-based technique has only one signal processing chain and does not need micro-lenses to
increase the signal-to-noise ratio (SNR), it is cost effective. In addition, the required power level of
the transmitted laser pulse is not as high as for the FPA-based technique because the STUD-based
technique illuminates one collimated laser pulse at a time in a specific direction. Figure 1 shows the
block diagram of a STUD-based LADAR system. In the STUD-based LADAR system, the transmitter
emits laser pulses over the entire ROI with two high-speed optical scanners and the receiver detects
the returned optical pulses to a static-unitary large-area photodetector.
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Figure 1. Block diagram of the static unitary detector (STUD)-based laser detection and ranging 
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However, an increase in the area of the photodetector results in a decrease in the bandwidth of 
the receiver due to the large parasitic capacitance of the large-area photodetector. To overcome this 
problem, the STUD-based LADAR receiver has multiple partitioned photosensitive cells, as shown 
in Figure 2. Each of the partitioned cells has its own transimpedance amplifier (TIA) to receive and 
amplify the optical current from each partitioned cell independently, and then a signal combiner 
sums all the outputs of each TIA into a single output signal STOP, which indicates the arrival of the 
return signal. A time-to-digital converter (TDC) calculates the TOF between the START and STOP 
signals. Since each partitioned cell with its own cascading TIA operates independently without 
affecting any of the other cells, its bandwidth remains unchanged. In addition, since the STUD-based 
LADAR receiver does not need to determine which cell detects the arriving laser pulse, inter-channel-
interference is not a problem, unlike in the FPA-based LADAR receiver. 

 

Figure 2. STUD-based LADAR receiver with partitioned photodetector. 

To implement a STUD-based LADAR receiver, the same number of TIAs as partitioned 
photosensitive cells is needed, and they are assembled on a single board. The pad pitch in the 
partitioned photodetector is totally different from the pad interval of the TIAs. In case the lengths of 
the interconnection lines between each photosensitive cell and the corresponding TIA is different, 
accurate time information cannot be obtained because the time delay varies depending on which 
photosensitive cell receives the return signal. Therefore, the electrical length of the interconnection 
lines between each photosensitive cell and the corresponding TIA should be designed equal on the 
test fixture. This limits the number of cells for higher-resolution 3D images over a large ROI due to 
the interconnection problem between a partitioned photodetector and multiple TIAs [14,15].  
To resolve this problem, a 4-to-1 transimpedance combining amplifier (TCA) was proposed in our 

Figure 1. Block diagram of the static unitary detector (STUD)-based laser detection and ranging
(LADAR) system.

However, an increase in the area of the photodetector results in a decrease in the bandwidth of
the receiver due to the large parasitic capacitance of the large-area photodetector. To overcome this
problem, the STUD-based LADAR receiver has multiple partitioned photosensitive cells, as shown
in Figure 2. Each of the partitioned cells has its own transimpedance amplifier (TIA) to receive and
amplify the optical current from each partitioned cell independently, and then a signal combiner sums
all the outputs of each TIA into a single output signal STOP, which indicates the arrival of the return
signal. A time-to-digital converter (TDC) calculates the TOF between the START and STOP signals.
Since each partitioned cell with its own cascading TIA operates independently without affecting any of
the other cells, its bandwidth remains unchanged. In addition, since the STUD-based LADAR receiver
does not need to determine which cell detects the arriving laser pulse, inter-channel-interference is not
a problem, unlike in the FPA-based LADAR receiver.
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Figure 2. STUD-based LADAR receiver with partitioned photodetector.

To implement a STUD-based LADAR receiver, the same number of TIAs as partitioned photosensitive
cells is needed, and they are assembled on a single board. The pad pitch in the partitioned
photodetector is totally different from the pad interval of the TIAs. In case the lengths of the
interconnection lines between each photosensitive cell and the corresponding TIA is different, accurate
time information cannot be obtained because the time delay varies depending on which photosensitive
cell receives the return signal. Therefore, the electrical length of the interconnection lines between
each photosensitive cell and the corresponding TIA should be designed equal on the test fixture. This
limits the number of cells for higher-resolution 3D images over a large ROI due to the interconnection
problem between a partitioned photodetector and multiple TIAs [14,15]. To resolve this problem,
a 4-to-1 transimpedance combining amplifier (TCA) was proposed in our previous work [14] as the
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front-end readout integrated circuit (ROIC) for the STUD-based LADAR receiver with a photodetector,
which has four photosensitive partitioned cells.

In this study, we propose a switched 4-to-1 TCA. The switched 4-to-1 TCA has a switch on each
input current path, as shown in Figure 3. The photodetector in this work has four photosensitive cells.
The target size of a single photosensitive cell is 350 µm × 100 µm and the parasitic capacitance of the
single cell is assumed to be 1 pF. In the STUD-based LADAR receiver, it is necessary to increase the
photosensitive area of the photodetector in order to enlarge the ROI in the STUD-based LADAR receiver.
Meanwhile, this increases the noise of the receiver due to the large-area photodetector. The proposed
switched 4-to-1 TCA can be used, as shown in Figure 4, in the STUD-based LADAR receiver front-end.
According to the position where the returned laser pulse arrives, one of the TCAs is switched on to
receive the optical current and the others are not connected to the photodetector. Therefore, the noise
generated from the unconnected photodetector cannot affect the receiver. The switch control signal EN
causes the switch to be turned on. Depending on the ROI, it is predicted which photodetector will
detect the return signal, so that the EN signal is able to turn on the corresponding switch.
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Figure 4. Operation example with the four proposed switched 4-to-1 TCAs and four multiple
partitioned photodetectors.

The TCA amplifies and combines current signals generated using the photosensitive cells from
incoming optical signals into one voltage signal for further processing. The switched 4-to-1 TCA is
fabricated using a standard complementary metal-oxide-semiconductor (CMOS) 0.18 µm technology.
It provides 3.8 pA/

√
Hz average noise current spectral density with a bandwidth of 353 MHz and

a transimpedance gain of 67.5 dBΩ. The core of the TCA consumes 17.8 mW of power from a 1.8 V
supply. The core of the TCA occupies an active area of about 92 µm × 68 µm and the die size including
I/O pads is 1000 µm × 840 µm.
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2. Architecture Description

The block diagram of the proposed switched 4-to-1 TCA is shown in Figure 5. It amplifies and
combines the photocurrent from the four partitioned photosensitive cells into one voltage signal.
The switched 4-to-1 TCA consists of four primary stages: (1) four over-current protection (OCP)
circuits; (2) four switches, four current buffers; (3) a signal combiner; and (4) a post-amplifier. The
OCP circuits prevent the fabricated chip from being damaged by a very high input signal. The switch
is turned on when the reflected laser pulse arrives at the corresponding photodetector among the
multiple detectors. The current buffer is a low impedance input stage intended to receive the optical
current from a photosensitive cell. The signal combiner sums the outputs of all the current buffers.
The post-amplifier is designed to preserve the bandwidth and to enhance the transimpedance gain.
A balun is a differential amplifier with differential input signals biased at the same direct current (DC)
level to convert the single-ended output of the signal combiner into a differential signal. The output
buffer is a differential amplifier with resistor loads of 50 Ω on both the positive and negative outputs.
The schematic diagram of the designed circuit is illustrated in Figure 6.
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2.1. OCP and Input Switch

The OCP circuit, as shown in Figure 6, is designed to protect the 4-to-1 TCA from being damaged
by a very high input current [16]. The transistor M5 turns on when its source voltage is larger than
1.04 V. As shown in Figure 7, when the input current is approximately 400 µA, the source voltage of
M5 reaches 1.043 V. When the input current is larger than 400 µA, the increase in the input voltage
is suppressed and the sink current to the OCP circuit increases. Therefore, the effective range of the
input voltage is from the DC bias voltage of the input current buffer, approximately 610 mV to 1.043 V,
before the OCP circuit turns on.
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To expand the ROI with multiple partitioned photodetectors, a switch is added on each input
current path. Several types of switches, such as n-channel metal-oxide-semiconductor field effect
transistor (NMOSFET or NMOS), p-channel MOSFET (PMOSFET or PMOS), and CMOS transmission
gates, are available. In this study, NMOS switches M6 are used on all input current paths, as shown
in Figure 6. A high output will be degraded by the NMOS switch, since the NMOS switch turns off
when the input becomes EN − Vth, where EN is a control signal of the switch and Vth is the threshold
voltage of the switch transistor M6. The maximum input value of the NMOS switch without signal
degradation is approximately 1.175 V when the Vth of M6 is about 625 mV, and the available maximum
input voltage dependent on the input photocurrent is 1.043 V. Therefore, an NMOS switch on the input
path is capable of passing an input signal having a value from 610 mV to 1.043 V. A PMOS switch is
not a viable solution, since the threshold voltage is larger than 610 mV and a low input signal cannot
be passed through a PMOS switch.
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2.2. 4-to-1 TCA, Post-Amplifier, Balun, and Output Buffer

Four copies of the regulated cascode (RGC) topology are selected as current buffers because
of their low input impedance and wide bandwidth characteristics, as compared to other topologies
such as the inverter, common-source, and common-gate topologies [17]. The RGC structure reduces
the input impedance significantly by using the M2 and R2 stage as a local feedback to boost the
transconductance of M1. The small-signal impedance of the RGC structure (Zin) is given by (1):

Zin
∼=

1
gm1(1 + gm2R2)

, (1)

where gm1 and gm2 are the transconductances of M1 and M2, respectively.
The signals from the current buffers combine through two stages, as shown in Figure 6. In the

first stage, two inputs are summed through the output load resistor R1 of the RGC TIA. In the second
stage, common-source amplifiers are used at the outputs of the two first-combining stages, and their
currents are summed through a single resistive load R3. There is a common-source amplifier between
the first and second combining stages that functions as a buffer and a bias shifter.

To analyze the effect of the noise introduced by partitioned photosensitive cells and the TCA, the
simplified circuit is illustrated in Figure 8 with noise factors [15]. The equivalent total input referred
noise of the TCA is approximately given by (2):
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where in,PD
2 is the noise from a single photosensitive cell, in,CB

2 is the generated noise in the current

buffer stage, in,C2
2 is the generated noise in the second combining stage, and in,R1

2 and in,R3
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thermal noise from R1 and R3, respectively. In this analysis, we assume that:
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In (2), the receiver noise with a large-area photodetector, even though it is partitioned, is increased
in the developed TCA. The noise generated in the first combining stage with the current buffer is also
the dominant factor of the equivalent total noise.

The post-amplifier is realized using a two-stage common-source amplifier. The first stage
has an active inductor load, consisting of a transistor M4 and a resistor R4, to increase the overall
bandwidth [18]. The second stage controls the pulse polarity and the DC bias.

The balun converts the single-ended TCA output signal to differential signals. The balun and
output buffer are illustrated in Figure 6. The balun is a differential amplifier with differential inputs
biased at the same DC level. In this study, the same DC voltage as compared with the output voltage of
the TCA is applied through additional DC bias port VB. The output buffer is also a differential amplifier,
and it is designed to match the output impedances to 50 Ω on both the positive and negative outputs.

The full width at half maximum (FWHM) of the input pulse used in this work is about 2.2 ns
and its rise time is ~1 ns. The bandwidth required for the designed TCA to preserve its rise time is
approximated by [19,20] as:

BW ∼=
0.35

tr
, (3)

where tr is the rise time of the input pulse. For a rise time of 1 ns, (3) gives a bandwidth of approximately
350 MHz. The simulated transimpedance gain of the developed TCA obtained using this balun and
output buffer is shown in Figure 9. The transimpedance gain is approximately 68 dBΩ and the −3 dB
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frequency is approximately 353 MHz with a photodetector parasitic capacitance of 1 pF. The gain and
bandwidth from each circuit stage is summarized in Table 1.
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Table 1. Summary of the circuit designed performances.

Stage Gain Bandwidth Direct Current (DC)

Current buffers and first combining stages (R1) 70 dBΩ (3 kΩ) 330 MHz 1.48 mA
Second combining stage 2 dB 310 MHz 0.65 mA

Post-amplifier 6 dB 415 MHz 2.06 mA
Balun and output buffer −10 dB 353 MHz 3.78 mA

3. Measurement Results

The switched 4-to-1 TCA was implemented in a 0.18 µm CMOS technology. The core occupies an
area of 92 µm × 68 µm, and the die size including I/O pads is 1000 µm × 840 µm. A microphotograph
of the fabricated chip with bond wires on the test fixture is shown in Figure 10. All the biases were
applied through bond wires, and short pulse response measurement was performed with a coaxial
micro-receptacle (CMJ) connector.
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The fabricated chip was mounted on a wire-bonded chip-on-board (COB) module to measure
the electrical pulse response, as shown in Figure 11a. A 10-kΩ resistor acts as a voltage-to-current
converter. To measure the pulse transient response of the fabricated circuit, an electrical pulse signal,
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generated from an Agilent 81110A pattern generator (Keysight, Santa Clara, CA, USA), was applied to
each input channel of the implemented test fixture, as shown in Figure 11b. The OUT+ and OUT−
signals were measured using an Agilent DSO7104B oscilloscope.
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The integrated single-ended output noise of the switched 4-to-1 TCA was measured via the
oscilloscope root-mean-square (RMS) calculation function with no input signal source, as shown in
Figure 13 [21]. The standard deviation of the output was measured to be 0.524 mV. After subtracting
the inherent oscilloscope noise of 0.4 mVrms, the corrected single-ended integrated output noise of the
TCA was estimated to be 0.338 mVrms. The integrated input-referred noise of the differential output of
the switched 4-to-1 TCA for each input channel can be calculated as in Reference [22].

In,in ≈
1
4
·
2
√
(0.524 mV)2 − (0.4 mV)2

67.5 dBΩ
= 0.07 µArms (5)
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The average input-referred noise current density is:

In,in,avg ≈
In,in√
BW

= 3.8 pA/
√

Hz (6)

The switched 4-to-1 TCA used a supply voltage of 1.8 V and dissipated 17.8 mW of power.
The performances of the TCA are summarized in Table 2.

Table 2. Summary of the switched 4-to-1 TCA performances.

Parameter Performance

Combining Channel 4
CPD/cell (pF) 1

Effective total CPD (pF) 4
Transimpedance gain (dBΩ) 67.5

Bandwidth (MHz) 353 (simulated)
Input-referred noise current density/cell (pA/

√
Hz) 3.8

Power consumption (mW) 17.8
Chip size (mm2) 1.00 × 0.84

Technology Complementary metal-oxide-semiconductor
(CMOS) 0.18 µm



Appl. Sci. 2017, 7, 689 10 of 11

4. Conclusions

A compact switched 4-to-1 TCA was implemented using 0.18 µm CMOS technology and was
used as a receiver front-end ROIC for a STUD-based LADAR system. A switch was inserted on the
input path of the TCA to expand the effective photosensitive area without increasing the noise from
the large-area photodetector of the STUD-based LADAR system. The space between the partitioned
photosensitive cells and its cascading current buffers was made smaller by about several hundred
micrometers by integrating several TIAs and a signal combiner onto a single chip. The fabricated
chip had a power consumption of 17.8 mW for a 1.8 V supplied voltage, an average input-referred
noise current spectral density of 3.8 pA/

√
Hz, and a transimpedance gain of 67.5 dBΩ. The chip

was operated based on the same working principle as the STUD-based LADAR receiver. Therefore,
the compact switched 4-to-1 TCA is suitable for the front-end ROIC of the STUD-based LADAR system
as one integrated chip.
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